Learning and the partial observability of continuous time

François Rivest April 7, 2010 Barbados

Plan

- Context & motivation
- What's particular about time?
- Traditional temporal representations
- Learning a temporal representation under reinforcement learning: A brain model (Rivest & al. J.C.N., 2009)
- Problems with recurrent neural networks and temporal series prediction
- Are we asking the right question?
- Basis of a new approach (if time)
- Take home message

Motivation

- How is the brain developing/constructing representations under reinforcement learning?
- While the dynamic of the environment is important, "models" often avoid time!
- Goal: Modeling the learning of temporal representations (environment dynamics representations) under reinforcement learning.

What's particular about time?

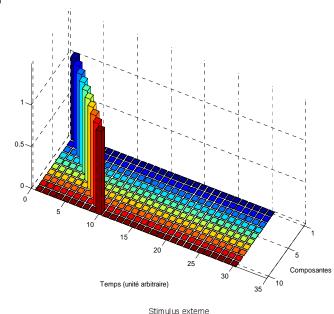
- Time is only partially observable
 - □ There is no time sensor in the multi-seconds range!
 - □ (Unless you have a watch!)
- Time is never directly observable
 - □ Time is a constant!
 - □ (Unless you have a watch!)
- Yet, the timing of events shapes our responses
 - □ If there is a temporal relationship, you will learn it!
 - □ (Note that temporal relationship is neither necessary nor sufficient to learn relationships in general.)

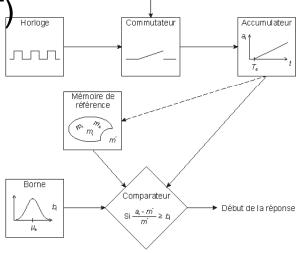
Traditional temporal representations

- Use of delay lines
 - Unrealistic for delays in the order of seconds (time-delay networks)
- Providing a full semi-markov model of the task.
 - This is what we would like to learn automatically

Using a clock & accumulator (SET

- When should we start the accumulator, is there a clock?
- Maybe temporal representation can be learned...



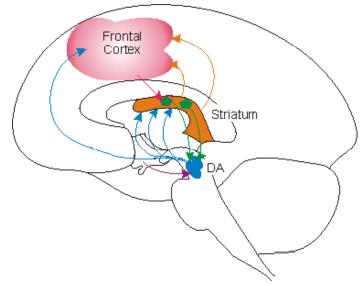


Learning a temporal representation under reinforcement learning: A brain model

Rivest, Kalaska, & Bengio (2009) Alternative Time Representation in Dopamine Models. *J. Comp. Neurosci.*

07/04/2010 François Rivest 11

Goals and Hypothesis



Hypothesis:

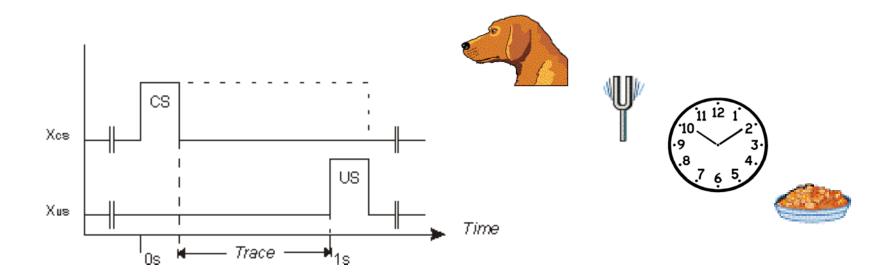
If the cortex learns the environment dynamics (unsupervised), then the resulting representation could be sufficient, in conjunction with TD, to explain the observed dopaminergic data.

Other goals:

- Develop a model that could help understanding how time could be represented within an artificial neural working memory.
- Evaluate hypothesis about the cortico-basal interactions, such as the possible role of dopamine in cortical learning.

Learning a temporal representation

- Looking for the simplest problem in which a temporal representation is learned.
- Classical/trace conditioning with a fixed ISI.



Dopaminergic neurons evidences

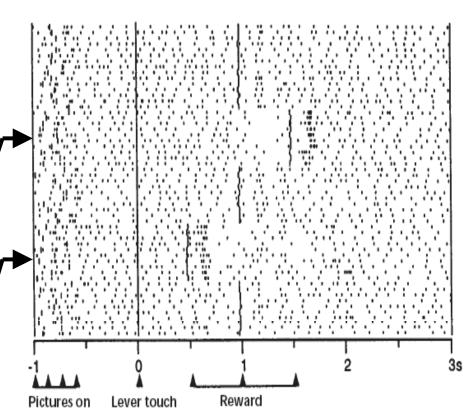
Dopaminergic neurons show be that temporal knowledge of the task exists in the brain.

TD error ≈ dopaminergic phasic signal

Dopaminergic activity after conditioning:

□ When reward is given late (2nd)

When reward is given early (4th)



Hollerman & Schultz (1998)

The model

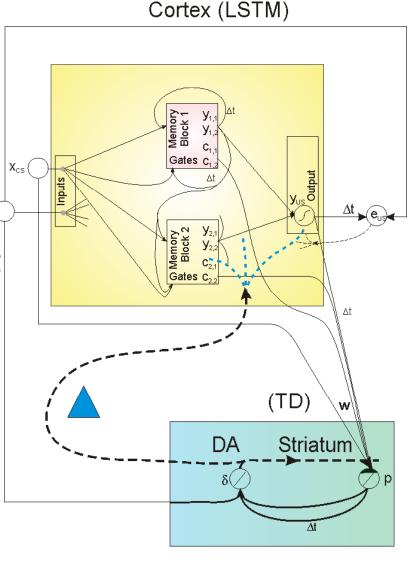
 Unsupervised recurrent neural network to model the cortex.

 Long short term memory LSTM as a working memory model.

□ (Hochreiter & Schmidhuber 97)

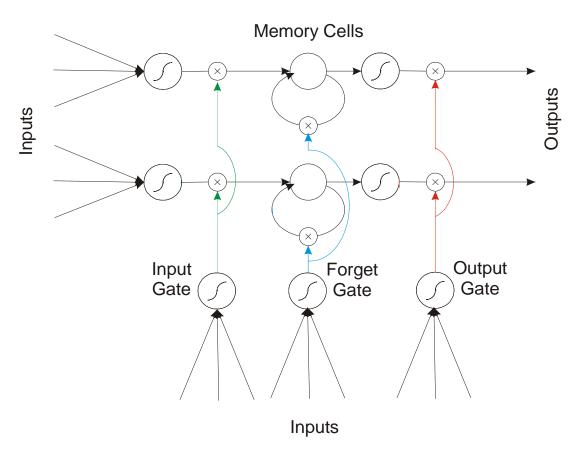
 LSTM learns to predict the next inputs (next observable state).

LSTM internal activities
(cortex) serve as inputs to the
RL system (TD, in the basal
ganglia).



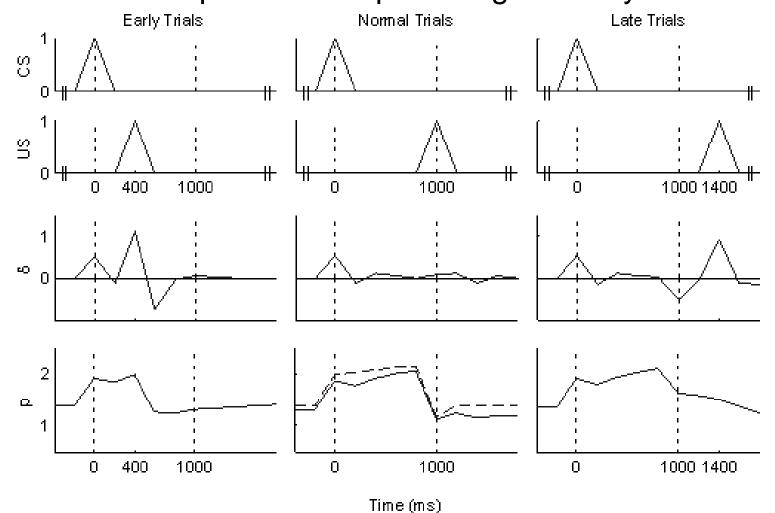
Working Memory (memory block)

- Frontal cortex is often considered to implement working memory
- Working memory must contain some form of gating
- Trained using backprop.
- The linear units allow error to backpropagate error further in time.
- The algorithm takes O(1) time and memory.



Dopaminergic data

■ The model reproduces dopaminergic activity



François Rivest 19

Dopaminergic neurons evidences

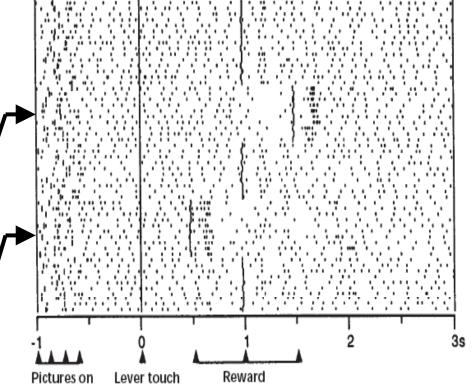
 Dopaminergic neurons show that temporal knowledge of the task exists in the brain.

> □ TD error ≈ dopaminergic phasic signal

Dopaminergic activity after conditioning:

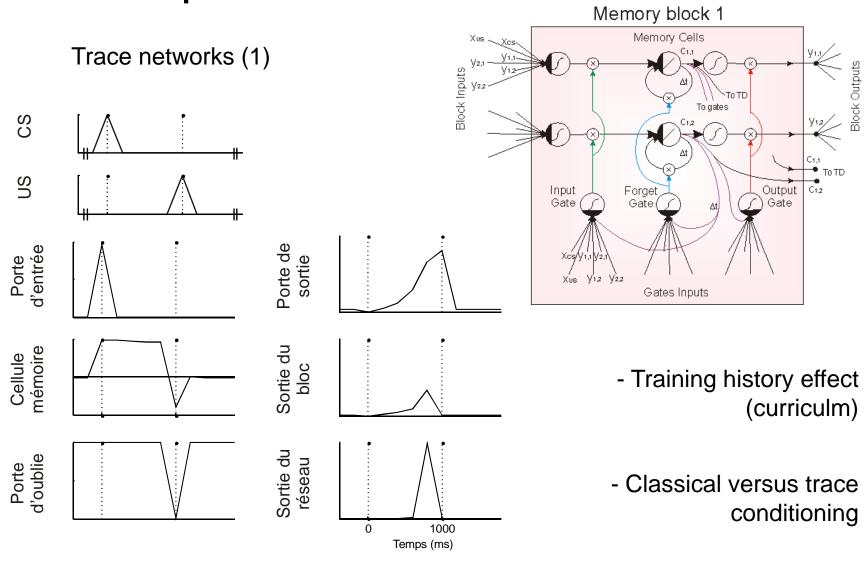
□ When reward is given late (2nd)

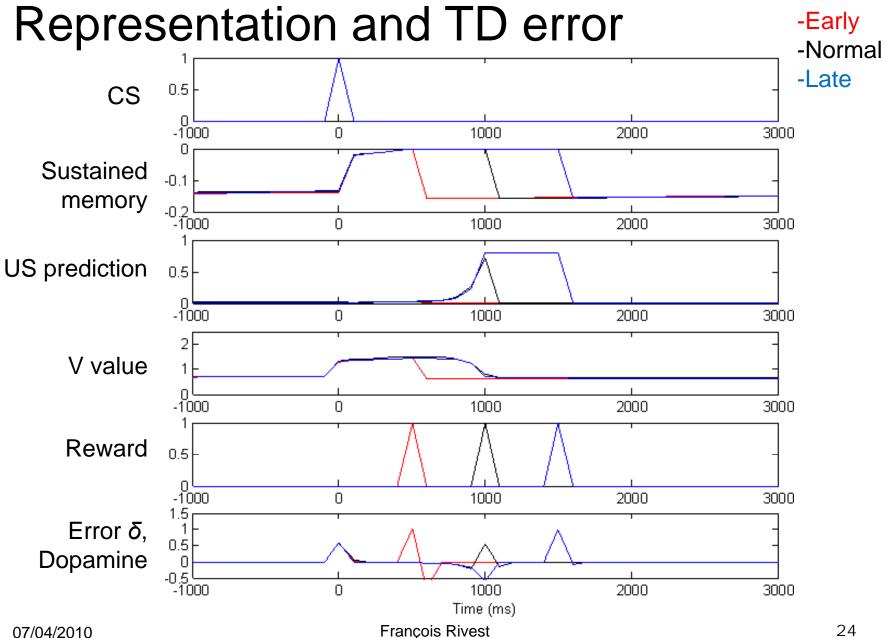
When reward is given early (4th)



Hollerman & Schultz (1998)

Time representation in LSTM





Summary

- In agreement with the hypothesis:
 - If the cortex learns the environment dynamics (unsupervised), then the resulting representation could be sufficient, in conjunction with TD, to explain the observed dopaminergic data.

Other goals:

- □ Develop a model that could help understand how temporal representation can develop within working memory.
 - In trace conditioning, the working memory is used to remember that a CS was observed and therefore, that a US is to be expected.
 - In delay conditioning, linear build-up of activity in memory cell.
 - The model also shows how each signal is combined to form the prediction V.
- □ Evaluate the possible roles of dopamine in cortical learning.
 - We showed that the error signal could be used to speed up cortical learning!

Problems with recurrent neural networks and temporal series prediction

- They have a finite amount of working memory, so it seems hard to learn long-term dependencies without knowing what to kept in working memory
- Slow learner
 - Gradient descent
 - Sigmoidal activation
 - □ Time-step dependence
 - □ They are not a nice adaptive dynamical system!
- Don't deal with timing error, they deal with output error

Are we asking the right question?

- Most current learning algorithms are asking what?
 - □ What event should append at time t
 - \square What value should we predict for time t
 - □ Etc...
- A different and important question might be <u>when!</u>
 - □ When should event x append?
 - □ At which rate should reward *r* come?
 - □ Etc...

Useful properties to seek

- That timing could be learned while learning an association, not only after
- That learning timing would require no more than a linear (or constant) amount of time and memory with respect to the interval time length to learn
- That timing precision could be proportional with the interval length (Weber's law for time)
- That one can correct for timing error, not only for action error (adapting the timing of action, not just which action)

07/04/2010 François Rivest 30

Take home messages

- Learning in the brain is not a single learning rule.
 - The brain great learning ability emerges from the interaction of different systems specialized in different aspects of learning.
- Time is an important factor.
 - □ The brain is slow and the world is not a discrete sequence of events (it has a dynamic).
 - \square There is an enormous amount of constancy between t and t+1.
 - Knowing the environment dynamics allows one to filter out a lot of predictable information.
 - The brain rarely takes a decision based on a single snap-shot of the inputs. It accumulate evidences using attention and time.

Acknowledgements

- Organisers:
 - Rich Sutton
 - Doina Precup
 - □ Elliot Ludvig
- Collaborators:
 - Yoshua Bengio (UMontréal)
 - John F. Kalaska (UMontréal)
 - Doina Precup (McGill)
 - □ Thomas R. Shultz (McGill)

Funding:

- Frédéric Dandurand (CNRS)
- Marc Bellemare (UAlberta)
- Elliot Ludvig (UAlberta)