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" A
Plan

Context & motivation
What's particular about time?
Traditional temporal representations

Learning a temporal representation under reinforcement
learning: A brain model (Rivest & al. J.C.N., 2009)

m Problems with recurrent neural networks and temporal
series prediction

m Are we asking the right question?
m Basis of a new approach (if time)
m Take home message
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= B
Motivation

m How Is the brain developing/constructing
representations under reinforcement learning?

m \While the dynamic of the environment is
Important, “models” often avoid time!

m Goal: Modeling the learning of temporal
representations (environment dynamics
representations) under reinforcement learning.
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"
What's particular about time?

m Time is only partially observable
There is no time sensor in the multi-seconds range!
(Unless you have a watch!)
m Time Is never directly observable
Time Is a constant!
(Unless you have a watch!)

m Yet, the timing of events shapes our responses
If there is a temporal relationship, you will learn it!

(Note that temporal relationship is neither necessary
nor sufficient to learn relationships in general.)
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"
Traditional temporal representations

m Use of delay lines
Unrealistic for delays in the order
of seconds (time-delay networks)
m Providing a full semi-markov
model of the task.
This is what we would like to learn
automatically
m Using a clock & accumulator (SET)-... e —
When should we start the a'
accumulator, is there a clock?
m Maybe temporal representation
can be learned...
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Learning a temporal representation under
reinforcement learning: A brain model

Rivest, Kalaska, & Bengio (2009) Alternative Time
Representation in Dopamine Models. J. Comp. Neurosci.
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"
Goals and Hypothesis

Frontal
Corex

atriatum

m Hypothesis:

If the cortex learns the environment dynamics (unsupervised),

then the resulting representation could be sufficient, in

conjunction with TD, to explain the observed dopaminergic data.
m Other goals:

Develop a model that could help understanding how time could
be represented within an artificial neural working memory.

Evaluate hypothesis about the cortico-basal interactions, such as
the possible role of dopamine in cortical learning.
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"
Learning a temporal representation

m Looking for the simplest problem in which a
temporal representation is learned.

m Classical/trace conditioning with a fixed ISI.
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"
Dopaminergic neurons evidences

m Dopaminergic neurons show
that temporal knowledge of . . . L e
the task exists in the brain. | s ip i v Tl iy
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"
The model

Cortex (LSTM)

m Unsupervised recurrent neural
network to model the cortex.

m Long short term memory LSTM
as a working memory model.
(Hochreiter & Schmidhuber 97)

m LSTM learns to predict the next
Inputs (next observable state).

m LSTM internal activites | ___———--- g
(cortex) serve as inputs to the / A
RL system (TD, in the basal

ganglia).
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"
Working Memory (memory block)

m Frontal cortex is often considered to implement working memory
m  Working memory must contain some form of gating

Memory Cells

 Trained using
backprop.

Inputs
Outputs

e The linear units
allow error to back-
propagate error
further in time.

e The algorithm
takes O(1) time
and memory.

Inputs
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Dopaminergic data

m The model reproduces dopaminergic activity
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Dopaminergic neurons evidences

m Dopaminergic neurons show
that temporal knowledge of . . . L e
the task exists in the brain. | s ip i v Tl iy
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" J
Time representation in LSTM

Memory block 1
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Representation and TD error

CS
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US prediction
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Dopamine
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Summary

m In agreement with the hypothesis:

~1 If the cortex learns the environment dynamics (unsupervised),
then the resulting representation could be sufficient, in
conjunction with TD, to explain the observed dopaminergic data.

m Other goals:

O Develop a model that could help understand how temporal
representation can develop within working memory.

m In trace conditioning, the working memory is used to remember that a CS
was observed and therefore, that a US is to be expected.

m In delay conditioning, linear build-up of activity in memory cell.
s The model also shows how each signal is combined to form the prediction V.

O Evaluate the possible roles of dopamine in cortical learning.
s We showed that the error signal could be used to speed up cortical learning!
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"
Problems with recurrent neural networks
and temporal series prediction

m They have a finite amount of working memory, so it
seems hard to learn long-term dependencies without
knowing what to kept in working memory

m Slow learner
Gradient descent
Sigmoidal activation
Time-step dependence
They are not a nice adaptive dynamical system!

m Don’t deal with timing error, they deal with output error
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"
Are we asking the right question?

m Most current learning algorithms are asking what?
What event should append at time ¢
What value should we predict for time ¢
Etc...

m A different and important question might be when!
When should event x append?
At which rate should reward r come?
Etc...
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"
Useful properties to seek

m That timing could be learned while learning an
association, not only after

m That learning timing would require no more than a linear
(or constant) amount of time and memory with respect to
the interval time length to learn

m That timing precision could be proportional with the
Interval length (Weber’s law for time)

m That one can correct for timing error, not only for action
error (adapting the timing of action, not just which action)
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"
Take home messages

m Learning in the brain is not a single learning rule.
The brain great learning ability emerges from the interaction of
different systems specialized in different aspects of learning.

m Time is an important factor.

The brain is slow and the world is not a discrete sequence of
events (it has a dynamic).

There is an enormous amount of constancy between t and t+7.

Knowing the environment dynamics allows one to filter out a lot
of predictable information.

The brain rarely takes a decision based on a single snap-shot
of the inputs. It accumulate evidences using attention and time.
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